
Oskari Saarimäki, University of Jyväskylä, Finland
Supervisor: Prof. Yoshitaka Kuno, Kuno Laboratory, Osaka University, Japan
August 5, 2016

USING BOOSTED DECISION TREES IN THE
COMET EXPERIMENT

Abstract
In my work, I have implemented a machine learning algorithm called Boosted
Decision Trees (BDT) for the COMET experiment. The BDT reduces background
hits in the cylindrical drift detector, which is used to detect the signal electron
with a kinetic energy of 105 MeV. The algorithm is divided into a program
which trains the BDT and a program which uses the trees that were trained.
The BDT gives each of the hits a score which can be then used to discriminate
signal hits from background hits. The efficiency curve is looking as expected
and for example 90% signal retention gives 88% background rejection. The re-
sults were better than a single cut, but there is room for improvement also.
For example adding a shape recognition would most likely give even better
results.



1 Introduction
The objective of the COMET experiment is to discover the charged lepton
flavour violation. The charged lepton flavour violation means that for example
a coherent neutrinoless conversion of muons to electrons can happen. The idea
of the method used in the COMET experiment is to create muonic atoms, and
within a lifetime of a muonic atom the muon converts into an electron in the
orbit

µ− + N(A, Z)→ e− + N(A, Z).

The atom emits the electron with a kinetic energy of 105 MeV and this is used
as the signal [1]. The detection will be made by a cylindrical detector, which
consists of a Cylindrical Drift Chamber (CDC) and trigger hodoscopes. The
CDC is used to reconstruct tracks of charged particles in a magnetic field. The
momentum of a particle can be calculated from the curvature of the particle
track, which can be seen from figure 1. The signal electron has somewhat spe-
cific properties, which differ from the background. But because the separation
of signal hit and background hit properties is not perfect, a single cut for ex-
ample from energy deposition alone, won’t be good enough.

2 Methods
In my work, the objective is to remove background hits and retain signal hits
in the CDC as well as possible. The method chosen is a machine learning al-
gorithm called Boosted Decision Trees (BDT) [2]. The whole program and the
algorithm is completely implemented by me, using C++. Histograms and data
storing have been done using ROOT [3]. The idea is to create a single strong
learner from a multiple of weak learners, namely decision trees. An example
of a single decision tree is drawn in figure 2. As one can see from the figure
2, the tree commits a series of cuts for the group of hits. In the case of the ex-
ample, there are three cuts made, namely energy deposition, time from trigger
and layer ID. In my code, in addition of those mentioned in the example, I also
use the average energy deposition of the closest neighbours in the same layer
as the hit. The distributions for signal and background of these four properties
can be seen in the figure 3. From each of the distributions it can be seen that
signal hits behave differently compared to the background hits.

Speaking about single hits in the CDC might be first confusing as there are
thousands of events forming from groups of hits. In my code all of the hits
from the selected events get listed with the four properties described before.
This single list of hits with different properties is then used in the BDT.

1



#17: Triggered @ 700 ns, Ngood = (58,58), Nnoise = (362,213)

cm
80− 60− 40− 20− 0 20 40 60 80

cm

80−

60−

40−

20−

0

20

40

60

80

#17: Triggered @ 700 ns, Ngood = (58,58), Nnoise = (362,213)

Figure 1: Example of a CDC event. Blue circles are background hits and red
circles signal hits.

2.1 Creating a single Decision Tree

The trees are created using a control group of hits. This means that the program
knows which control group hits are signal and which are background. The tree
begins at a node, where all of the hits are included and in the beginning the
weights of the hits are equal

Wi =
1

Nhits
∀ i.

This node will be split into two new branches. The program has to decide
the optimal cut point for each of the comparisons and also choose the best
comparison to use, as in my case there are four different choices. To decide

2



Figure 2: An example of a decision tree. Trees created by the algorithm can
basically be of any shape and cut points also vary. S means signal and B back-
ground. The original figure is created by Byron P. Roe et al. [2] and edited by
me.

which cut is the best, a purity of a node or a branch is defined as

P =
∑s Ws

∑s Ws + ∑b Wb
, (1)

where ∑s Ws is the sum of weights for all the signal hits and ∑b Wb is the sum
of weights for all the background hits. From the equation 1, Gini is defined as

Gini =

(
n

∑
i=1

Wi

)
P(1− P). (2)

Note that the n in this equation is the number of hits in that particular branch
or node, as it changes depending on where in the tree is Gini being calculated.
Then, for a cut is defined

Criterion = Ginifather −Ginileft son −Giniright son, (3)

3



(GeV)
10

log
9− 8− 7− 6− 5− 4− 3− 2−

to
ta

l
N

/N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Background

Signal

Energy deposition

(a) Energy deposition distribution

ns
600 800 1000 1200 1400 1600

to
ta

l
N

/N

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0.0022
Background

Signal

Time from trigger

(b) Distribution of time from trigger

Layer ID number
0 2 4 6 8 10 12 14 16 18

to
ta

l
N

/N

0

0.02

0.04

0.06

0.08

0.1

Background

Signal

Layer ID

(c) Layer ID distribution

(GeV)
10

log
9− 8− 7− 6− 5− 4− 3− 2−

to
ta

l
N

/N

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Background

Signal

Average neighbour energy deposition

(d) Avg. neighbour energy deposition

Figure 3: Histograms for signal and background. These four properties were
used in my algorithm. It is well seen here that the signal behaves little bit dif-
ferently than background.

where father is the branch which is being split and sons are the two remaining
branches. When deciding between many cuts, maximising Criterion gives the
best separating cut.

Before choosing the best comparison for the first node, the best cut point for
each of the comparisons have to be decided. This is good to do, because the
optimal cut point changes between different trees and branches. The Criterion
will be calculated for each of the points in that histogram and the point with
biggest Criterion will be chosen as the optimal cut point. This optimal cut point
will be calculated for each of the comparisons. Then the best Criterions of each
comparison will be compared and the comparison with the biggest Criterion
will be chosen as the initial comparison.

4



Now that the first cut has been made, two branches have been created. As Gini
describes how well a group of hits are separated in a branch, I decided that the
next comparison will be always asked from a branch with the biggest Gini.
This means that the next cut will be made for a branch with the worst separa-
tion. After the next branch has been decided, all of the remaining comparisons
will again be tested for the best cut point and out of those, the best compar-
ison will be chosen in a similar manner as before. After the second cut there
are three branches available. The next comparison will be then asked from the
branch with the biggest Gini, in the same way as before. After all the compar-
isons have been asked once, the tree is ready. All the ending point branches are
now leafs. Leafs with purity bigger than 0.5 will be labeled as signal leafs and
leafs with purity less than 0.5 will be labeled as background leafs. Example of
this can be seen in the figure 2. It is good to note that there will almost always
be false positives and false negatives in these kinds of trees.

2.2 Boosting

After creating a decision tree comes the boosting part of the algorithm. I have
used the Adaptive Boost, or AdaBoost for short. For each of the trees, there is
defined a function

errm =
∑N

i=1 Wi I(yi 6= Tm(xi))

∑N
i=1 Wi

, (4)

where N is the total amount of hits, xi is ith hit and

yi =

{
1 if ith hit is signal
−1 if ith hit is background

(5)

Tm(xi) =

{
1 if ith hit is labeled as signal by the mth tree
−1 if ith hit is labeled as noise by the mth tree

(6)

I(yi 6= hm(xi)) =

{
1 if yi 6= hm(xi)

−1 if yi = hm(xi).
(7)

This means that if a tree labels almost all of the hits correctly, equation 4 will
be near 0, and if a tree fails to label the hits correctly, equation 4 will get closer
and closer to 1.

From equation 4 is defined

αm = β× ln
(

1− errm

errm

)
, (8)

5



where β = 1 in my case. Some different methods use different values for the
constant β. Equation 8 could be dubbed as ’the betterness equation’ as it ef-
fectively describes how well the mth tree is separating the given group of hits.
If the tree is good at separation, errm → 0 and αm becomes a big number. If
the tree is not separating the hits at all, errm = 0.5 where αm = 0. This means
that the tree did nothing useful. Also it could be possible that a tree could be
labelling the signal as background and background as signal, and in this case
errm → 1 and αm becomes a big negative number. This is a harmful situation to
the whole BDT, so usually the run is terminated if a case of errm > 0.5 happens.
This is also true for my algorithm.

Using equations 7 and 8, the weight of the hits are changed

Wi →Wi × eαm I(yi 6=Tm(xi)) ∀ i. (9)

What this basically means, is that the weight of the hits that were labeled
wrong by the mth tree will be increased, so in the next tree they will get a
bigger attention, and in the other hand correctly labeled hits get no change to
their weight. It is good to notice that if the errm > 0.5 then the weights would
actually shrink, which is the opposite of what is meant to do. After this, the
weights are again normalised

Wi →
Wi

∑N
i=1 Wi

∀ i.

As the weights are different in the next round, the tree will also most prob-
ably be different and yield different results. The weights of the hits are quite
important because they are being used in all stages of this algorithm. Next the
second tree gives new weights and a third one is created and so on. This way
hundreds or thousands of trees are created.

2.3 Score

When all of the hundreds of trees have been created by the control group of
known hits, the created trees can be used also for unknown hits. All of the hits
go through all of the trees and each hit gets a score

T(xi) =
∑Ntrees

m=1 αmTm(xi)

∑Ntrees
m=1 αm

. (10)

This score T(xi) ∈ [−1, 1]. This basically means that a hit that has been labeled
mostly as signal gets a bigger score and vice versa.

6



Score
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

to
ta

l
N

/N

0

1

2

3

4

5

6

7

8 Background

Signal

Score for the blind results

(a) Score distribution

Signal retention
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

un
d 

re
je

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency for the blind results

(b) Efficiency curve

Figure 4: Score and efficiency for 5251 events with 301 trees.

3 Results
The score histogram for unknown hits can be seen in the figure 4a. The picture
shows that the signal and background has separated, but not perfectly. This is
expected. The reason why the signal hits are gathered around 0 and not near
1 might come from the fact that signal is really underrepresented in the data
compared to the background.

The efficiency curve in figure 4b has been calculated from each point of the
score histogram. From this curve it can be decided what kind of efficiency is
the best in this case. Figure 4b shows that for example a 90% signal retention
would result in a 88% background rejection, and vice versa, but many other
choices can be also made. When handling real data, it cannot be discriminated
which hit is background and which is signal in the same way as in figure 4a.
In a real situation the best cut point for the score can be estimated according to
the efficiency curve.

4 Summary
From the results of this algorithm, it is fairly safe to say that the BDT works
for experiments like COMET. The results give a definite improvement over a
simple single cut or a single decision tree. Still, from figure 4a it can be seen,
that there still is room for improvement. Also the speed of the tree training
algorithm is relatively slow, but it was never my intention to create the fastest
algorithm in the first place. On the other hand, using the created trees is much
faster.

7



I strongly believe that if added, a shape recognition for the signal track would
probably increase efficiency. From figure 1 it can be seen that the signal elec-
tron has a distinct curvature which could be used to remove additional noise.
I also want to point out for those interested that there are a couple of very ca-
pable machine learning libraries which can be used to create BDT for many
purposes, for example scikit-learn for python and TMVA for ROOT.

8



References
[1] The COMET Collaboration,COMET Phase-1 Technical Design Report, July

2016
[2] Byron P. Roe and Hai-Jun Yang and Ji Zhu and Yong Liu and Ion Stancu

and Gordon McGregor, Boosted decision trees as an alternative to artificial
neural networks for particle identification Nuclear Instruments and Meth-
ods in Physics Research, vol. 543 2-3, doi:10.1016/j.nima.2004.12.018, 2005

[3] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Bun-
cic, Ph. Canal, D. Casadei, O. Couet, V. Fine et al., ROOT: A C++
framework for petabyte data storage, statistical analysis and visualiza-
tion, Comput.Phys.Commun. 180 2499-2512 doi:10.1016/j.cpc.2009.08.005
arXiv:1508.07749, 2009

9


